
Simultaneous Data Compression and Encryption

T.SubhamastanRao 1, M.Soujanya,2 T.Hemalatha,3 T.Revathi,4

#1,3,4, Dept of IST, KL University,Guntur Dt, Andhra Pradesh,India

*2Dept of CSE, MRECW College, Hyderabad, Andhra Pradesh,India

ABSTRACT-Data compression is known for reducing storage
and communication costs. It involves transforming data of a
given format, called source message to data of a smaller sized
format called codeword. Data encryption is known for
protecting formation from eavesdropping. It transforms data of
a given format, called plaintext, to another format, called cipher
text, using an encryption key. The major problem existing with
the current compression and encryption methods is the speed,
i.e. the processing time required by a computer. To lessen the
problem, combine the two processes into one. The basic idea of
the combining the two processes is to add a pseudo random
shuffle into a data compression. The aim behind the shuffling
process is to get the different Huffman table for the original
Huffman tree by shuffling nodes in the tree. Using the numbers
generated by pseudo random generator, nodes in the Huffman
tree are shuffled. After the encryption we will get one mapping
Huffman table, which is not identical to the original. Finally this
table only will send across the network. Once the Huffman table
is encrypted no one having the decompression module can
decrypt it. So in this new algorithm compression and encryption
is done simultaneously.

KEYWORDS:Encryption,Decryption,Compression,Datacompre
ssion,Decompression,Huffman compression.

1. INTRODUCTION
Security of network communications is arguably the most
important issue in the world today given the vast amount of
valuable information that is passed around in various
networks. While larger files need to be sent on network with
security, it has to be encrypted. The files larger in size when
encrypted still increases in size. Hence normally its
compressed and sent across the network. Data compression is
known for reducing storage and communication costs. It
involves transforming data of a given format, called source
message, to data of a smaller sized format, called codeword.
Data encryption is known for protecting information from
eavesdropping. It transforms data of a given format, called
plaintext, to another format, called cipher text, using an
encryption key. The major problem existing with the current
compression and encryption methods are

1. Low Speed.
2. More processing time.
3. More Cost.
 To lessen the problem, our approach combines the two

processes (Compression and Encryption) into one process. In
the new approach both encryption and compression are done
at the same time. It takes less processing time and more
speed. For compression Huffman compression algorithm is
used. Add pseudo Random shuffle into the data compressed.
Nodes in the tree are shuffled. Shuffling is done to get
different Huffman table. After encryption we will get one

shuffled Huffman table. i.e. Not identical to original .Finally
this table is send across the network. Once encrypted no other
than the intended receiver can decrypt it. Hence compression
and encryption is done simultaneously.
1.1. Existing system:
Currently compression and encryption methods are done
separately The major problem existing with the current
compression and encryption methods is the speed, i.e. the
processing time required by a computer. Because doing two
processes takes more time.
1.2. Proposed system:
To lessen the problem, this approach combines the two
processes into one. i.e. proposed a new approach which will
perform both encryption and compression at the same time.
This approach lessons the processing time required by a
computer to do the compression and encryption processes.

2. SYSTEM ANALYSIS AND DESIGN

2.1. PROBLEM DEFINITION:
Currently compression and encryption methods are done
separately. The major problem existing with the current
compression and encryption methods is the speed, i.e. the
processing time required by a computer .Because doing two
processes takes more time. To lessen the problem, our
approach combines the two processes (Compression and
Encryption) into one process. In the new approach both
encryption and compression are done at the same time. It
takes less processing time and more speed. For compression
Huffman compression algorithm is used. Add pseudo
Random shuffle into the data compressed. Node in the tree is
shuffled. Shuffling is done to get different Huffman table.
After encryption we will get one shuffled Huffman table i.e.;
not identical to original .Finally this table is send across the
network. Once encrypted no other than the intended receiver
can decrypt it. Hence compression and encryption is done
simultaneously.
2.2. DESIGN METHODOLOGY
2.2.1. INTRODUCTION TO DATA COMPRESSION:
Data compression is often referred to as coding, where coding
is a very general term encompassing any special
representation of data which satisfies a given need.
Information theory is defined to be the study of efficient
coding and its consequences, in the form of speed of
transmission and probability of error. Data compression may
be viewed as a branch of information theory in which the
primary objective is to minimize the amount of data to be
transmitted. The purpose of this paper is to present and
analyze a variety of data compression algorithms. A simple
characterization of data compression is that it involves
transforming a string of characters in some representation

 T. Subhamastan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2369-2374

2369

(such as ASCII) into a new string (of bits, for example) which
contains the same information but whose length is as small as
possible. Data compression has important application in the
areas of data transmission and data storage. Many data
processing applications require storage of large volumes of
data, and the number of such applications is constantly
increasing as the use of computers extends to new disciplines.
At the same time, the proliferation of computer
communication networks is resulting in massive transfer of
data over communication links. Compressing data to be
stored or transmitted reduces storage and/or communication
costs amount of compression that can be obtained with
lossless compression. Lossless compression ratios are
generally in the range of 2:1 to 8:1. Lossy compression, in
contrast, works on the assumption that the data doesn't have
to be stored perfectly. Much information can be simply
thrown away from images, video data, and audio data, and
the when uncompressed, the data will still be of acceptable
quality. Compression ratios can be an order of magnitude
greater than those available from lossless methods. The
question of which is "better", lossless or lossy techniques, is
pointless. Each has its own uses, with lossless techniques
better in some cases and lossy techniques better in others. In
fact, lossless and lossy techniques are often used together to
obtain the highest compression ratios. Even given a specific
type of file, the contents of the file, particularly the
orderliness and redundancy of the data, can strongly
influence the compression ratio. In some cases, using a
particular data compression technique on a data file where
there isn't a good match between the two can actually result
in a bigger file.
2.2.2. HUFFMAN COMPRESSION ALGORITHM
Huffman compression is a primitive data compression
scheme invented by Huffman in 1952. The Huffman
compression algorithm is named after its inventor, David
Huffman, formerly a professor at MIT. This code has become
a favorite of mathematicians and academics, resulting in
volumes of intellectual double-talk. Huffman’s patent has
long since expired and no license is required. There are
however many variations of this method still being patented.
The code can easily be implemented in very high speed
compression systems. The Huffman code assumes “prior
knowledge” of the relative character frequencies stored in a
table or library. A secret table made available only to
authorized users can be used for data encryption. A more
sophisticated and efficient lossless compression technique is
known as "Huffman coding", in which the characters in a data
file are converted to a binary code, where the most common
characters in the file have the shortest binary codes, and the
least common have the longest. The Huffman Compression
algorithm is an algorithm used to compress files. It does this
by assigning smaller codes to frequently used characters and
longer codes for characters that are less frequently used.
Huffman Compression, also known as Huffman Encoding, is
one of many compression techniques in use today. Others are
LZW, Arithmetic Encoding, RLE and many more. One of the
main benefits of Huffman Compression is how easy it is to

understand and implement yet still gets a decent compression
ratio on average files.
. Example-1 the Huffman tree is as shown below

 Figure1

Each non leaf node of the tree has two child nodes, the left
child node and the right child node. The non leaf node is
known as the parent node of these two child nodes. Similarly
the parent of a parent node is the grandparent of the child
nodes. The parent, grand parent, great grandparent etc. are
collectively called the ancestors of a child node. The child
nodes are called the descendants of the ancestors. In the tree
above node 3 is the parent of nodes 6 and 7. Node 1 is the
parent of 3. It is also the grandparent of nodes 6 and 7.
Generally nodes 3 and 1 are the ancestors of nodes 6 and 7.
Nodes 6 and 7 are the descendants of nodes 3 and 1. Note
that if n characters are present in a file then the number of
nodes in the Huffman tree is 2n-1. If there are n nodes in a
tree then there can be at most (n+1)/2 levels, and at least
log2(n+1) levels. The number of levels in a Huffman tree
indicates the maximum length of code required to represent a
character.
The code length of a character indicates the level in which the
character lies. If the code length of a character is n then it lies
in the (n+1)th level of the tree. For example the code length
of character D is 011. the code length is 3. Therefore this
character must lie in the 4th level of the tree. The code for
each character is obtained by starting from the root node and
traveling down to the leaf that represents the character. When
moving to a left child node a '0' is appended to the code and
when moving to a right child node a '1' is appended to the
code. To get the code for the character 'A' from the tree, we
first start at the root node (i.e node 1). Since the character 'A'
is the descendant of the right child node (We decide which
branch to follow by testing to see which branch either is the
leaf node for the character or is its ancestor) we move to the
right and append a '1' to the code for character 'A'. Now we
are on node 3. The leaf node for character 'A' lies to the right
of this node, so we again move to the right and append a '1' to
its code. We have now reached node 7 which is the leaf node
for the character 'A'. Thus the code for character 'A' is 11. In
similar fashion the codes for other characters can also be
obtained. You can see that codes of characters having higher
frequencies are shorter than those having lower frequencies,.
There are two types of Huffman coding: static and adaptive.
In a static Huffman coding, the Huffman tree stays the same
in the entire coding process. In an adaptive Huffman coding,
the Huffman tree changes according to the data processed.

 T. Subhamastan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2369-2374

2370

 Figure2

Once the Huffman tree is built, regardless of its type,
the encoding process is identical. The codeword for each
source character is the sequence of labels along the path from
the root to the leave node representing that character. For
example, in above FIG., the codeword for ‘a’ is ‘01’, ‘b ’ is
‘1101’, etc.
2.3. SYSTEM ARCHITECTURE:
Data compression is known for reducing storage and
communication costs. It involves transforming data of a given
format, called source message to data of a smaller sized
format called codeword. Data encryption is known for
protecting information from eavesdropping. It transforms
data of a given format, called plaintext, to another format,
called cipher text, using an encryption key. The major
problem existing with the current compression and
encryption methods is the speed, i.e. the processing time
required by a computer. To lessen the problem, combine the
two processes into one. The basic idea of the combining the
two processes is to add a pseudo random shuffle into a data
compression. The aim behind the shuffling process is to get
the different Huffman table for the original Huffman tree by
shuffling nodes in the tree. Using the numbers generated by
pseudo random generator, nodes in the Huffman tree are
shuffled. After the encryption we will get one mapping
Huffman table, which is not identical to the original. Finally
this table only will send across the network. Once the
Huffman table is encrypted no one having the decompression
module can decrypt it. So in this new algorithm compression
and encryption is done simultaneously.
2.4. DATA FLOW DIAGRAM:

 (Sender side)

 Figure3

 A data flow diagram (DFD) is a graphical
reprasenttion that depicts information flow and the transform
that are applied that are applied as data moves from input to
output. The DFD may be used to represent a system or
software at the level of abstraction.DFDs may be partitioned
into level that represents information and functional details.
Hence DFD provides a mechanism for functional modeling as
well as information modeling. A level-0 DFD also called as
fundamental system model or a context model represents a
entire software element as single bubble with input and
output processes(bubble)and information flow paths are
represented as level-0 DFD is partitioned to reveal more
details that is level-1 may contain 5 or 6 bubbles with inter
connecting arrows.Each is the process represented at level-1
is a sub function of overall system depictured in the ontext
model. A Rectangle is used to represent an External Entity
i.e., a system element(e.g. Hardware, a person, another
program)or another system produce information for
transformation by the software or receives the information
produced by the software. A circle(also called bubble)
represents a process or transform that is applied to data(or
control) and changes it in some way. An Arrow represents
one or more data iems, the double line represents the data
store-store information that is used by software. The
simplicity of DFD notation is one reason why structures
analysis techniques are widely used.

2.5. COMPRESSION DIAGRAM

Figure 4.

2.6. DECOMPRESSION DIAGRAM:

Figure 5.

Find the
frequency of the
character

 Initialize the
Huffman table

Frequency
table

Build the
Huffman tree

Input to
Encryption
process

Input file

Write
into

Huffman
table

Original file

Decompress

Rebuild the
Huffman tree

Compressed
file

 START

 Frequency Table Generation

 weights

Huffman Tree

Pseudo Random Shuffle

Encryption O/P

 T. Subhamastan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2369-2374

2371

2.7. CODE DESIGN
This paper basically consists of four modules. They are

 Compression/Encryption module
 Decryption module/ Decompression

2.7.1. COMPRESSION & ENCRYPTION MODULE:
In this paper, to compress the file Huffman compression
algorithm is used. To compress the file first we need to
generate the Huffman tree for the given input file.

ALGORITHM FOR HUFFMAN ENCODING
Step I: Generate the table of frequencies
Make one pass through the original file to determine:
 The number of bytes in the file (original file size).
 The number of unique bytes (the alphabet size).
 The number of times each unique byte appears in the

file (the weights).
Step II: Build the encoding tree

 Put all of the leaf nodes in a priority queue based on
their weights.

 Do the following until the priority queue is empty:
 Delete the smallest two nodes.
 Create a new node with these deleted nodes as

children.
 Set the parent pointers of the deleted nodes in the

table.
 Set the child type of the deleted nodes in the table.

Step III: Encoding the characters
 For each character in the input file, find the leaf node
corresponding to that character and then traverse the tree to
its root, pretending the bits for that character. If current node
is a left child, pretend a 0.If current node is a right child,
pretend a 1.If current node has no parent, return the string for
this character.Otherwise, the parent the current node. After
the compression process the Huffman tree for the input file is
generated as well as the Huffman table is created. Once the
Huffman tree is generated, the file is scanned again and each
character in the file is replaced by its corresponding code
from the tree. Once this is done, the character and the codes
for each character along with the length of each code must be
saved in the file in the form of a table. This table is needed
during the decompression process. The frequency of the
characters does not have to be saved because it is not needed
for the decompression process. After the compression process
the Huffman tree are encrypted using the pseudo random
shuffle. Pseudo random shuffle provides a seed with that a
mapping Huffman table will be generated.

Figure 6 - Encryption Process Diagram

In this encryption module the Huffman table, which is
generated in the compression process is different from the
existing table. With that a new tree is generated and fixed
length key is used to encrypt the Huffman table. In this

Huffman table contains maximum of 256 entries. The output
of this module is the mapping Huffman table. This Huffman
table is saved along with the compressed file. So, once the
Huffman table is encrypted no one having the decompression
module can decrypt it.
 Set the children pointers in the decoding table
 For each entry in the table starting with index 0: (Do
not include the last one because it is the root).
 Get the parent of this entry
 If the current entry is a right child , set the right
child of the parent to this entry
 Otherwise set the left child of the parent to this entry
 Set the parent of the entry to -1.

ALGORITHM FOR WRITE UNENCODEDFILE:
 For each character in the encoded file:
 Start at the root of the tree (entry currenttableSize -1

in the table).
 Do
 Read the bit
 If the bit is a 0 take the left branch.
 If the bit is a 1 take the right branch.
 Until child is -1(leaf).
 Output the leaf’s byte values to the file.

CODE TO IMPLEMENT HUFFMAN ENCODING
ALGORITHM:
 Code to implement Step 1 of the Huffman
Encoding algorithm :

private void computeCharacterCounts() throwsIOException
{
FileInputStream f=null;
Try
{ // we catch and rethrow the exception to be sure to close file
f=new FileInputStream(unencodedfileName);
int thisByte;
while((thisbyte=f.read())!=-1) {
insertInTable(thisByte,1); {
unencodedFileSize++;
}}
catch(Exception e) {
throw new
IOException(“Exception”+e.getMessage()+”reading”+unencodedFil
eName);
}
finally
{ // always want to close the file no matter what
if(f!=null)
f.close();
}
alhabetsize=currenttablesize; // now have the unique characters}
private void insertInTable(int v,int weight) {
if(invertedTable[v]==-1)
{ //if v is not in the table add it
encdingTable[currentTableSize]=newHuffmanCodingEntry(v,
currentTableSize,weight,-1,false);
invertedTable[v]=currentTableSize;
currentTableSize++;}
else // add weight to the total weight of the character v
encodingTable[invertedTable[v]].addWeight(weight); }

Encryption
process
(Using

Pseudo random
shuffle)

Huff
man

Mapping
Huffman

table

 T. Subhamastan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2369-2374

2372

 Code to implement Step II of the Huffman
Encoding algorithm :
Private void buildTree(){
int nextInternalvalue=MAXIMUM_UNIQUE_CHARCTERS;
PriorityQueueADT q=new LinkedPriorityQueue();
for(int i=0;i<alphabetSize;i++)
q.add(encodingTable[i]);
try{
while(true)
{
HuffmanCodingEntry T1=(HuffmanCodingEntry)(q.removeMin());
HuffmanCodingEntry
T2=(HuffmanCodingEntry)(q.removeMin());T1.setParent(currentTa
bleSize);
T2.setParent(currentTableSize);
T2.setChildtype(true);
insertInTable(nextInternalValue,T1.getWeight()+T2.getWeight());
q.add(encodingTable[currentTableSize-1]);
nextInternalvalue++;
}}
catch(NoSuchElementException e) { //expected to happen at end
}}

 Code to implement Step III of the Huffman
Encoding algorithm :

Private void writeEncodedFile()throwIoException{
BitInputStream f=null;
Try{
f=new BitInputStream(unencodedFileName);
encodedFile.writeInt(unencodedFilesize);
encodedFile.wirteInt(alphabetSize);
for(int i=0;i<currentTableSize;i++)
encodedFile.writeInt(encodingTable[i].encode());
// Read one character at a time,encode it, and write to file
int thisChar=0;
for(int j=0;j<unencodedFileSize;j++)
{
if((thisChar=f.readByte())==-1)
throw new IOException(“Unexpected end of file reading character
“+ j +”in ”+ unencodedFileName);
writeEncodedChar(thisChar,encodedFile);
}
encodedFile.flush();
}
catch(Exception e){
throw new IOException(“Error encoding file: “+e.getMessage());
}
finally{
encodedFile.close();
if(f!=null)
f.close();}}
private void wirteEncodedChar(int thisChar,bitOutputStream bout)
throw IOException
{
int theEntry=invertedTable[thisChar]; // Find the position in the
table
int theParent=encodingTable[theEntry].getParent();
if(theParent==-1)
return;
writeEncodedChar(encodingTable[theParent].getValue(),bout);
bout.writeBit(encodingTable[theEntry].isRightChild());
}

 Code to implement Huffman Decoding algorithm
Byte huffman_decode_byte(pointer to binary tree node)
{
// First we have to check if we are in a fictive node or in leaf .
// In our case we decided that fictive nodes have a value
higher
// than any other symbol.If using byts,256.That’s the way
// we know it.
If(node->value!=256)
{
//It’s leaf,return the symbol
return node ->value; }
else
{
//We are on a fictive node,we have to right to the
//left or the right node depending on the next bit.
// we’ll return the value returned by the fuction
//called,which will be the decoded byte.
If(get_bit()==0)
{
//Go to the left
return (Huffman_decode_byte(node->left_node));
}
else
{
//Go to the right
return(huffman_decode_byte(node->right_node));
}}

2.8. SCREEN SHOTS

Fig.7.The above screen shows the main screen of encryption

and decryption button.

Fig 8 . This screen shows the content of the text file before

the compression and encryption process.

 T. Subhamastan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2369-2374

2373

Fig 9. This screen shows the file after compression is 31KB.

After this process one compresses and encryption and
encrypted file is generated with the extension of “ .huf ” .

Fig 10 The screen shows the original Huffman table and the

mapping Huffman table. Mapping Huffman table is generated
after encryption.

Fig 11. The screen shows the size of the file after

decompression

Fig 12.This screen shows the content of the bmp file.

Fig 13. The size of the file after compression is 31KB. The
screen shows the original Huffman table and the mapping
Huffman table. Mapping Huffman table is generated after

encryption.

Fig 14 This is the decryption screen

CONCLUSION

 Besides the obvious execution time advantage of combining
the two processes of data compression and encryption, the
encryption strengths of our methods are as good as any other
encryption algorithms such as DES, triple DES, and RC5. In
this approach the speed is very high because here we need to
encrypt only the Huffman table rather encrypting the whole
file which is to be transmitted. The encryption strength of the
method of encrypting the Huffman table depends on the
length of the encryption key. This approach is mainly
developed to improve the speed and to provide more security.
There may be enhancement in future to this approach, which
can provide more efficiency. More over, there may be any
attacks to this approach in future. So, enhancements to this
approach may rectify those attacks.

REFERENCES AND BIBLIOGRAPHY
1. “Simultaneous Data Compression and Encryption” presented in SAM'03,

by Chung-E Wang, Department of Computer Science California State
University.

2. D.A. Huffman, “A Method for the Construction of Minimum-
Redundancy Codes”, in: Proc. IRE, 40, 9 (Sept.),1952, pp.

3. Andre Skupin “Use of Huffman trees to Encode Verbal Street
Direction”

4. “Huffman Compression” Written for the PC-GPE and the World by Joe
Koss (Shades)

5. “Basic Encryption “by Matt Recker
6. “Introduction to Data Compression” by Guy E. Blelloch, Computer

Science Department, Carnegie Mellon University
7. “The Huffman Compression Algorithm” by Vimil Saju
8. “Computer Networks” - Tanenbaum, fourth edition 2002 PHI.
9. “Cryptography & Network Security” - Willim Stalling, third edition

2003.
10. ”Software Engineering” - Pressman, fifth edition 2003 TMH.

 T. Subhamastan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2369-2374

2374

